Comparing Clustering Techniques for Telecom Churn Management
نویسندگان
چکیده
Mobile telecommunication sector has been accelerated with GSM 1800 licenses in the Turkey. Since then, churn management has won vital importance for the GSM operators. Customers should have segmented according to their profitability for the churn management. If we know the profitable customer segments, we have chance to keep in hand the most important customers via the suitable promotions and campaigns. In this study, we implemented clustering algorithms to 250 subscribers’ 100MBs call detail records(CDRs), demographic data and billing information. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) compared with K-Means, Expectation Maximization and Farthest-First clustering techniques. As a result, DBSCAN has good distinct clusters for profiling customer segments. Key-Words: Clustering Algorithms, Data Mining, Clustering for GSM, DBSCAN, Benchmarking of Clustering Methods, Churn Management
منابع مشابه
Customer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملReview of Data Mining Techniques for Churn Prediction in Telecom
Telecommunication sector generates a huge amount of data due to increasing number of subscribers, rapidly renewable technologies; data based applications and other value added service. This data can be usefully mined for churn analysis and prediction. Significant research had been undertaken by researchers worldwide to understand the data mining practices that can be used for predicting custome...
متن کاملCustomers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms
With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a...
متن کاملAn effective hybrid learning system for telecommunication churn prediction
Customer churn has emerged as a critical issue for Customer Relationship Management and customer retention in the telecommunications industry, thus churn prediction is necessary and valuable to retain the customers and reduce the losses. Moreover, high predictive accuracy and good interpretability of the results are two key measures of a classification model. More studies have shown that single...
متن کاملHigh Accuracy Predictive Modelling for Customer Churn Prediction in Telecom Industry
Churn prediction is an important factor to consider for Customer Relationship Management (CRM). In this study, statistical and data mining techniques were used for churn prediction. We use linear (logistic regression) and non-linear techniques of Random Forest and Deep Learning architectures including Deep Neural Network, Deep Belief Networks and Recurrent Neural Networks for prediction. This i...
متن کامل